

International Journal of Research In Pharmacovigilance and Pharmacotherapeutics

Conceptualization of cross-linking polymers and lipids for better bio adhesion and oral bioavailability

M. Chanti Naik*1, Asiya Shaik2, J Samreen Begum2

¹Department of Pharmaceutical Analysis, Annamacharya College of Pharmacy, New Boyanapalli, Rajampet, Andhra Pradesh-516126.

²Department of Pharmaceutics, Smt. SarojiniRamulamma College of Pharmacy, Mahabubnagar, Telangana-509001, India.

ABSTRACT

Over the last decades, approaches in designing several lipid carriers have been evolved to deliver the poorly soluble drugs. Lipid based systems can play a vital role in improving the efficacy and safety, thus finally enhancing the therapeutic efficiency. LBDS can be modified in several ways to meet the wide range of product necessities as per the disease condition, product stability and route of administration. Crosslinking of polymers or lipids using modern techniques have greatly helped to modulate the specific release of drugs and as well safe guard the drug from various enzymes produced in the body thereby increasing the bioavailability greatly. The cross-linking will greatly enable to swell and even allow these varieties of polymers to adhere to the natural human tissues, mucosal membranes allowing them to be used for site specific release. The review emphasis on different approaches of crosslinking employed for complementing to prepare novel drug delivery systems like Emulsions, vesicular system and lipid particulate systems.

Keywords: Diabetes Mellitus; Steroids.

ISSN: Awaiting Review Article

Corresponding Author

Name: M. Chanti Naik

Email: chantinaik5007@gmail.com

Article Info

Received on: 05-08-2020 Revised on: 20-09-2020 Accepted on: 13-10-2020

DOI: https://doi.org/10.33974/ijrpp.v1i1.237

Copyright© **2020**, M. Chanti Naik, et al. Conceptualization of Cross-linking Polymers and Lipids for Better Bio adhesion and Oral Bioavailability, Production and hosting by *Rubatosis Publications*. *All rights reserved*.

INTRODUCTION

Till today, oral route is the most preferred route of administration, owing to highest patient compliance, greater convenience, reduced cross-infections/contaminations and economy [1]. Conversely, this route is continuously looking into newer advances due to the drawbacks associated with solubility, poor gastrointestinal absorption, larger fluctuations in plasma drug levels and rapid metabolism. All these factors may cause for unsatisfactory in vivo performance, leading to failure

of conventional drug delivery systems [2-4]. Many significant efforts have been tried for the potential application of lipid-based drug delivery systems (LBDS), to provide the required site specific controlled release of wide range of drugs and bioactive agents by improving their solubility. Especially, Class II drugs are challenging the formulator in view of their bioavailability. LBDS, have shown their efficient size dependent properties to attract a lot of consideration. There are important few points to be considered while formulating LBDS as follows, (a) solubility, (b) digestion, (c) dispersion, (d) absorption, (e) miscibility, (f) solvent capacity etc and also includes morphology at room temperature, regulatory issue, purity and chemical stability [5]. Several advantages of LBDS are depicted in Figure 1.

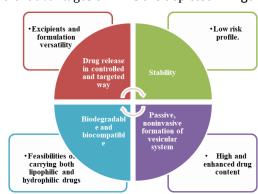


Figure 1: Advantages of LBDS

These systems are commercially feasible to formulate the dosage forms for oral, topical, pulmonary, or parenteral delivery. Carrier for LBDS are proved as safe and efficient and hence applied to formulate several vaccines, nutraceuticals and diagnostics. Hence, present review emphasis on design and application of LBDS.

Trends and drawbacks in design and formulation of LBDS

LBDS can be modified in several ways to meet the wide range of product necessities as per the disease condition. product stability and route administration. But, at a very early stage of development, formulation strategies based on a rational and systematicapproach need to be developed to avoid erratic and poor invitro/in vivo correlations and thus increase the chances of successin formulation development. Several useful strategies have been published by several authors [6-^{10]}. LBDS can be classified majorly into Emulsions, Vesicular system and Lipid particulate systems.

Emulsions

Emulsions are heterogeneous systems of dispersed liquid throughout another continuous liquid in the form of droplets (droplets size usually exceeding 0.1μ diameter). Emulsions are again classified in to microemulsion, emulsifying drug delivery systems (SEDDS), nano-emulsions and Pickering Emulsions. Microemulsion concept was first introduced by Hoar and Schulman in 1940 and size was varied from 10-200 nm. These were evolve between various structures in range of swollen micelles to droplets. Thermodynamic stability, ease in formulation and optical clarity are the few advantages associated with microemulsions. SEDDS are mixtures of oil and surfactants and sometimes co-solvents, which emulsify immediately to produce a fine O/W type of emulsion when added to an aqueous phase with gentle agitation [11].

Recently, SEDDS were formulated using triglyceride oils and non ionic surfactants were proved to be less toxic. Potential benefits of these systems includes, improved bioavailability, more reliable temporal profiles of absorption and site specific. Nanoemulsions having the size of droplets in range of 50-1000 nm and formulated with surfactants that are approved by GRAS (Generally Recognized as Safe) [12].Nanoemulsion can reduce the frequency of administration and can guarantee the drug release in controlled manner.

Lipid based emulsions which were stabilized by solid particles such as silica, clays, titanium dioxide etc are known as Pickering emulsions. The added sold particles will bind to the surface of the interface and prevents the droplets from coalescing, which make the formulation more stable. In addition, stability of Pickering emulsions can be improved by adding

amphiphilic particles, owing to their high adsorption energy.

Vesicular drug delivery systems

Several novel vesicular systems were evolved every day [13-26]. Drug delivery systems as well as biomedical applications of these systems along with other microstructures are currently enjoying the enormous recognition among the researchers of several disciplines. These systems includes liposomes, proliposomes, ethosome, phytosome, transfersome and niosome etc [27-59].

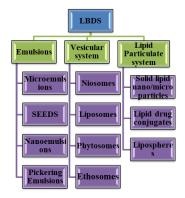


Figure 2: Approaches for LBDS.

Lipid particulate systems:

Since few decades, lipids of nanoparticle and microparticle were evolved as potential polymeric carriers due to their size dependant properties. Few advantageous characters of these systems includes,

- Higher levels of drug targeting,
- Controlled drug release,
- Physiologically compatible and stable,
- Ease of technology transfer to large scale,
- Protection of active ingredient.
- Matrix is composed of well tolerable lipids.
- High stability.

These systems comprises of lipospheres, lipid drug conjugates, solid lipid nanoparticles and microparticles. Despite of all these merits, LBDS have few limitations with respect to gastric retention especially for the drug which are having the absorption window in the upper GIT. Thus, can encounter with the less bioavailability and absorption. Hence to overcome this several cross linking techniques were incorporated to enhance the gastric retention either gastric retention approaches.

Application of mucoadhesion technologies

Application of mucoadhesive systems or cross linking with other related polymers can also improve the residence of dosage form in the absorption site [60] Mucoadhesive polymers have to enhance the contact with mucus membrane by forming strong covalent bonds. Thiolation is one of the approach to improve mucoadhesion property of several natural and synthetic polymer [61,62]. Thiolated LBDS are proved as efficient in improving the bioavailability of several

insoluble drugs, which are having the absorption window in the stomach [63-67]. Response surface methodology can be applied successfully to study the interaction of independent factors [68].

Future prospective and conclusion

There is a need to consider more about the characteristics of various lipid formulations, so that experimental conditions and guidelines can be established. More technologies to be applied for the identification of suitable candidates at early stages. Attention to several physical and chemical stability issues of drug in the lipid systems. There a need to seek the tracking of solubilization of drug in in-vivo conditions. Despite the fact that these present challenges, there is a great potential in the use of lipid formulations. The safety of the different nanodelivery carriers following uptake needs to be explored further. Studies focused nanotoxicology of these delivery systems in human skin have been limited, especially with the newer classes, and is likely to vary according to the composition and size of the vesicles. Finally, LBDS are physiologically well tolerated class of systmes, which provides a vast array of possibilities to formulate and potentially increase the bioavailability of poorly soluble drugs.

REFERENCE

- 1. Naveen, N.R., Gopinath, C., Rao, D.S. (2017) Design expert supported mathematical optimization of repaglinide gastroretentive floating tablets: In vitro and in vivo evaluation. *Future J. Pharm. Sci.* 3(2):140-147. (doi:10.1016/j.fips.2017.05.003)
- NR Naveen, C Gopinath, DS Rao (2017), Isolation and assessment of natural mucoadhesive agent isolated from Abelmoschus esculents, Journal of Pharmacy Research 11 (5), 438-443
- DRB P. Divya, N. Raghavendra Naveen, Snehalatha (2013), Optimization of cross linked tragacanth and comparison of drug Release rate profile with synthetic superdisintegrants on Metoclopramide orodispersible tablets, *International journal of* pharmacy and life sciences 4 (3), 2500-2505.
- 4. NR Naveen, (2013) Design and characterization of sustained release matrix tablets of glimepiride by using synthetic and natural polymers, *International journal of drug discovery and herbal research* 3 (1), 573-578.
- Vanitasagar, S., Srinivas, C., Subhashini, N. J. P., & Mallesh, K. (2012). Solid dispersion-a comparative study on the dissolution rate of aceclofenac. *International Journal of Pharmacy and Pharma*ceutical Sciences, 4(SUPPL.3), 274–278.
- 6. El Maghraby, G.M., Barry, B.W.,and-Williams,A.C.(2008).Liposomes and skin: from drug delivery to mode lmembranes.

- *Eur.J.Pharm.Sci.* 34,203–222.doi: 10.1016/j.ejps.2008.05.002
- 7. Elsayed,M.M., Abdallah,O.Y., Naggar,V.F., and Khalafallah,N. M.(2007).Lipid vesicles for skin delivery of drugs: reviewing three decades of research. *Int.J.Pharm.* 332,1–16.doi:10.1016/j.ijpharm.2006.12.005
- 8. Honeywell-Nguyen, P.L., and Bouwstra, J.A. (2005). Vesicles as a tool for transdermal and dermaldelivery. *Drug Discov. Today Technol.* 2,67–74. doi: 10.1016/j.ddtec.2005.05.003
- Hua,S.(2014).Comparison of *invitro*dialysis release methods of loperamide- encapsulated liposomal gel for topical drug delivery. *Int.J.Nanomedicine*9, 735–744.doi:10.2147/IJN.S55805
- 10. Hua, S., and Wu, S.Y. (2013). The use of lipid-based nanocarriers for targeted pain therapies. *Front. Pharmacol.* 4:143.doi:10.3389/fphar.2013.00143
- 11. Venkatesh, M., & Mallesh, K. (2013). Self-Nano Emulsifying Drug Delivery System (Snedds) for Oral Delivery of Atorvastatin- Formulation and Bioavailability Studies. *Journal of Drug Delivery and Therapeutics*, 3(3), 131–140. https://doi.org/10.22270/jddt.v3i3.517
- 12. Hosny, K. M., Aldawsari, H. M., Bahmdan, R. H., Sindi, A. M., Kurakula, M., Alrobaian, M. M., Aldryhim, A. Y., Alkhalidi, H. M., Bahmdan, H. H., Khallaf, R. A., & El Sisi, A. M. (2019). Preparation, Optimization, and Evaluation of Hyaluronic Acid-Based Hydrogel Loaded with Miconazole Self-Nanoemulsion for the Treatment of Oral Thrush. *AAPS PharmSciTech*, 20(7), 297. https://doi.org/10.1208/s12249-019-1496-7
- 13.T Mallamma, DR Bharathi, RG Lakshmi, T Vyjayanthimala, J Nagasubbareddy, R Naveen (2014), Etoposide-loaded nanoparticles made from poly-e-caprolactone (PCL): formulation, characterization, in vitro drug release for controlled drug delivery system, *Int. J. Biopharm* 5, 5-12
- 14. Abdelhady, S., Honsy, K. M., & Kurakula, M. (2015). Electro Spun- Nanofibrous Mats: A Modern Wound Dressing Matrix with a Potential of Drug Delivery and Therapeutics. *Journal of Engineered Fibers and Fabrics*, 10(4), 155892501501000. https://doi.org/10.1177/155892501501000411
- 15. Ahmed, O. A. A., Kurakula, M., Banjar, Z. M., Afouna, M. I., & Zidan, A. S. (2015). Quality by design coupled with near infrared in formulation of transdermal glimepiride liposomal films. *Journal of Pharmaceutical Sciences*, 104(6), 2062–2075. https://doi.org/10.1002/jps.24448
- 16. Ahmed, S., Sarim Imam, S., Zafar, A., Ali, A., Aqil, M., & Gull, A. (2016). In vitro and preclinical assessment of factorial design based nanoethosomes

- transgel formulation of an opioid analgesic. *Artificial Cells, Nanomedicine and Biotechnology*, 44(8), 1793–1802.
- https://doi.org/10.3109/21691401.2015.11027
- 17. Alhakamy, N. A., Ahmed, O. A. A., Kurakula, M., Caruso, G., Caraci, F., Asfour, H. Z., Alfarsi, A., Eid, B. G., Mohamed, A. I., Alruwaili, N. K., Abdulaal, W. H., Fahmy, U. A., Alhadrami, H. A., Eldakhakhny, B. M., & Abdel-Naim, A. B. (2020). Chitosan-based microparticles enhance ellagic acid's colon targeting and proapoptotic activity. *Pharmaceutics*, *12*(7), 1–14. https://doi.org/10.3390/pharmaceutics12070652
- 18. Alhakamy, N. A., Fahmy, U. A., Ahmed, O. A. A., Caruso, G., Caraci, F., Asfour, H. Z., Bakhrebah, M. A., Alomary, M. N., Abdulaal, W. H., Okbazghi, S. Z., Abdel-Naim, A. B., Eid, B. G., Aldawsari, H. M., Kurakula, M., & Mohamed, A. I. (2020). Chitosan coated microparticles enhance simvastatin colon targeting and pro-apoptotic activity. *Marine Drugs*, 18(4), 226. https://doi.org/10.3390/md18040226
- 19. Andleeb, A., & Yar, M. (2020). Application of Electrospun Materials in Industrial Applications. *Electrospun Materials and Their Allied Applications*, 215–242. https://doi.org/10.1002/9781119655039.ch8
- 20. Hasnain, M. S., Kiran, V., Kurakula, M., Rao, G. K., Tabish, M., & Nayak, A. K. (2020). Use of alginates for drug delivery in dentistry. In *Alginates in Drug Delivery* (pp. 387–404). Elsevier. https://doi.org/10.1016/b978-0-12-817640-5.00015-7
- 21. Hasnain, M. S., Nayak, A. K., Kurakula, M., & Hoda, M. N. (2020). Alginate nanoparticles in drug delivery. In *Alginates in Drug Delivery* (pp. 129–152). Elsevier. https://doi.org/10.1016/b978-0-12-817640-5.00006-6
- 22. Kurakula, M., & A. Ahmed, T. (2015). Co-Delivery of Atorvastatin Nanocrystals in PLGA based in situ Gel for Anti-Hyperlipidemic Efficacy. *Current Drug Delivery*, 13(2), 211–220. https://doi.org/10.2174/156720181366615110 9102718
- 23. Kurakula, M., Ahmed, O. A. A., Fahmy, U. A., & Ahmed, T. A. (2016). Solid lipid nanoparticles for transdermal delivery of avanafil: optimization, formulation, in-vitro and ex-vivo studies. *Journal of Liposome Research*, 26(4), 288–296. https://doi.org/10.3109/08982104.2015.11174
- 24. Kurakula, M., El-Helw, A. M., Sobahi, T. R., & Abdelaal, M. Y. (2015). Chitosan based atorvastatin nanocrystals: Effect of cationic charge on particle

- size, formulation stability, and in-vivo efficacy. *International Journal of Nanomedicine*, *10*, 321–334. https://doi.org/10.2147/IJN.S77731
- 25. Kurakula, M., & Koteswara Rao, G. S. N. (2020). Moving polyvinyl pyrrolidone electrospun nanofibers and bioprinted scaffolds toward multidisciplinary biomedical applications. *European Polymer Journal*, 136, 109919. https://doi.org/10.1016/j.eurpolymj.2020.109919
- 26. Hosny, K. M., Aldawsari, H. M., Bahmdan, R. H., Sindi, A. M., Kurakula, M., Alrobaian, M. M., Aldryhim, A. Y., Alkhalidi, H. M., Bahmdan, H. H., Khallaf, R. A., & El Sisi, A. M. (2019). Preparation, Optimization, and Evaluation of Hyaluronic Acid-Based Hydrogel Loaded with Miconazole Self-Nanoemulsion for the Treatment of Oral Thrush. *AAPS PharmSciTech*, 20(7), 297. https://doi.org/10.1208/s12249-019-1496-7
- 27. Kurakula, M., Naveen, N. R., & Yadav, K. S. (2020). Formulations for Polymer Coatings. *Polymer Coatings*, 415–443. https://doi.org/10.1002/9781119655145.ch19
- 28. Kurakula, M., & Raghavendra Naveen, N. (2020). In situ gel loaded with chitosan-coated simvastatin nanoparticles: Promising delivery for effective anti-proliferative activity against tongue carcinoma. *Marine Drugs*, 18(4), 201. https://doi.org/10.3390/md18040201
- 29. Kurakula, M., Rao, G. K., Kiran, V., Hasnain, M. S., & Nayak, A. K. (2020). Alginate-based hydrogel systems for drug releasing in wound healing. In *Alginates in Drug Delivery* (pp. 323–358). Elsevier. https://doi.org/10.1016/b978-0-12-817640-5.00013-3
- 30. Kurakula, M., & Rao, G. S. N. K. (2020). Type of Article: REVIEW Pharmaceutical Assessment of Polyvinylpyrrolidone (PVP): As Excipient from Conventional to Controlled Delivery Systems with a Spotlight on COVID-19 Inhibition. *Journal of Drug Delivery Science and Technology*, 102046.
- 31. Kurakula, M., Sobahi, T. R., El-Helw, A., & Abdelaal, M. Y. (2014). Development and validation of a RP-HPLC method for assay of atorvastatin and its application in dissolution studies on thermosensitive hydrogel-based nanocrystals. *Tropical Journal of Pharmaceutical Research*, 13(10), 1681–1687. https://doi.org/10.4314/tjpr.v13i10.16
- 32. Kurakula, M., Srinivas, C., Kasturi, N., & Diwan, P. V. (2012). Formulation and Evaluation of Prednisolone Proliposomal Gel for Effective Topical Pharmacotherapy. *International Journal of Pharmaceutical Sciences and Drug Research*, 4(1), 35. www.ijpsdr.com

- 33. Mallesh, K., Pasula, N., & Kumar Ranjith, C. P. (2012). Piroxicam proliposomal gel: a novel approach for tropical delivery. *Journal of Pharmacy Research*, *5*(3), 1755–1763.
- 34. Kurakula, M., Mohd, A. B., A, P. R., & Diwan, P. V. (2011a). Estimation of Prednisolone in Proliposomal formulation using RP HPLC method. *Int. J. Res. Pharm. Biomed. Sci. 2011; 2: 663, 2*(4), 1663–1669
- 35. Kurakula, M., Mohd, A. B., Rao, P. A., & Diwan, P. V. (2011). Estimation of piroxicam in proliposomal formulation using RPHPLC method. *Int. J. Chem. Anal. Sci.* 2011; 2: 1193, 1196.
- 36. Murali, V. P., Fujiwara, T., Gallop, C., Wang, Y., Wilson, J. A., Atwill, M. T., Kurakula, M., & Bumgardner, J. D. (2020). Modified electrospun chitosan membranes for controlled release of simvastatin. *International Journal of Pharmaceutics*, 584, 119438.
 - https://doi.org/10.1016/j.ijpharm.2020.119438
- 37. Naguib, G. H., Hassan, A. H., Al-Hazmi, F., Kurakula, M., Al-Dharrabh, A., Alkhalidi, H. M., Al-Ahdal, A. M., Hamed, M. T., & Pashley, D. H. (2017). Zein based magnesium oxide nanowires: Effect of anionic charge on size, release and stability. *Digest Journal of Nanomaterials and Biostructures*, 12(3), 741–749.
- 38. Naguib, Ghada Hussein, Al-Hazmi, F. E., Kurakula, M., Abdulaziz Al-Dharrab, A., Mohamed Hosny, K., Mohammed Alkhalidi, H., Tharwat Hamed, M., Habiballah Hassan, A., Al-Mohammadi, A. M., Mohamed Alnowaiser, A., & Henry Pashley, D. (2018). Zein coated zinc oxide nanoparticles: Fabrication and antimicrobial evaluation as dental aid. *International Journal of Pharmacology*, 14(8), 1051–1059.
 - https://doi.org/10.3923/ijp.2018.1051.1059
- 39. Patel, A., Hu, Y., Tiwari, J. K., & Velikov, K. P. (2010). Synthesis and characterisation of zein-curcumin colloidal particles. Soft Matter, 6(24), 6192.
- 40. Podaralla, S., & Perumal, O. (2012). Influence of formulation factors on the preparation of zein nanoparticles. AAPS PharmSciTech, 13(3), 919–927.
- 41. Regier, M. C., Taylor, J.D., Borcyk, T., Yang, Y., & Pannier, A. K. (2012). Fabrication and characterization of DNA-loaded zein nanospheres. Journal of Nanobiotechnology, 10, 44.
- 42. Ren, W., Tian, G., Jian, S., Gu, Z., Zhou, L., Yan, L., et al. (2012). TWEEN coated NaYF4:Yb, Er/NaYF4 core/shell upconversion nanoparticles for bioimaging and drug delivery.RSC Advances, 2(18), 7037.
- 43. Saberi, A. H., Fang, Y., & McClements, D. J. (2013). Fabrication of vitamin E-enriched nanoemulsions: Factors affecting particle size using spontaneous emulsification. Journal of Colloid and Interface Science, 391, 95–102.

- 44. Shukla, R., & Cheryan, M. (2001). Zein the industrial protein from corn. Industrial Crops and Products, 13, 171–192.
- 45. Tobitani, A., & Ross-Murphy, S. B. (1997). Heat-induced gelation of globular proteins. Model for the effects of time and temperature on the gelation time of BSA gels. Macromolecules, 30, 4845–4854.
- 46. Wang, Y., & Padua, G. W. (2010). Formation of zein microphases in ethanol-water. Langmuir, 26(15), 12897–12901.
- 47. Wang, Y., & Padua, G. W. (2012). Formation of zein spheres by evaporation-induced self assembly. Colloid and Polymer Science, 290(15), 1593–1598.
- 48. Wang, Q., Yin, L., & Padua, G. W. (2008). Effect of hydrophilic and lipophilic compounds on zein microstructures. Food Biophysics, 3(2), 174–181.
- 49. Wu, Y., Luo, Y., & Wang, Q. (2012). Antioxidant and antimicrobial properties of essential oils encapsulated in zein nanoparticles prepared by liquid–liquid dispersion method. LWT Food Science and Technology, 48(2), 283–290.
- 50. Zhang, B., Luo, Y., &Wang, Q. (2011). Effect of acid and base treatments on structural, rheological, and antioxidant properties of α -zein. Food Chemistry, 124(1), 210–220.
- 51. Zhang, Y., Niu, Y., Luo, Y., Ge, M., Yang, T., Yu, L. L., et al. (2014). Fabrication, characterization and antimicrobial activities of thymol-loaded zein nanoparticles stabilized by sodium caseinate–chitosan hydrochloride double layers. Food Chemistry, 142, 269–275.
- 52. Zhao, Y., Wang, Z., Zhang, W., & Jiang, X. (2010). Adsorbed Tween 80 is unique in its ability to improve the stability of gold nanoparticles in solutions of biomolecules. Nanoscale, 2(10), 2114–2119.
- 53. Zhong, Q., & Jin, M. (2009). Zein nanoparticles produced by liquid–liquid dispersion. Food Hydrocolloids, 23(8), 2380–2387.
- 54. Khan, Y., Durrani, S. K., Siddique, M., & Mehmood, M. (2011). Hydrothermal synthesis of alpha Fe2O3 nanoparticles capped by Tween-80. Materials Letters, 65(14), 2224–2227.
- 55. Lai, L. F., & Guo, H. X. (2011). Preparation of new 5-fluorouracil-loaded zein nanoparticles for liver targeting. International Journal of Pharmaceutics, 404(1–2), 317–323.
- 56. Lee, S., Alwahab, N. S., & Moazzam, Z. M. (2013). Zein-based oral drug delivery system targeting activated macrophages. International Journal of Pharmaceutics, 454(1), 388–393.

- 57. Liang, H., Yang, Q., Deng, L., Lu, J., & Chen, J. (2011). Phospholipid-Tween 80 mixed micelles as an intravenous delivery carrier for paclitaxel. Drug Development and Industrial Pharmacy, 37(5), 597–605.
- 58. Malhotra, A., & Coupland, J. N. (2004). The effect of surfactants on the solubility, zeta potential, and viscosity of soy protein isolates. Food Hydrocolloids, 18(1), 101–108.
- 59. Matsushima, N., Danno, G. -i, Takezawa, H., & Izumi, Y. (1997). Three-dimensional structure of maize α -zein proteins studied by small-angle X-ray scattering. Biochimica et Biophysica Acta, 1339, 14–22.
- 60. NR Naveen, TS Nagaraja, DR Bharathi, JNS Reddy (2013), Formulation Design and In Vitro Evaluation for Stomach Specific Drug Delivery System of Anti Retroviral drug–Acyclovir, *International Journal of Pharmacy and Life Sciences* 4 (3), 2506-2510.
- 61.NR Naveen, C Gopinath, DS Rao, (2018), A spotlight on thiolated natural polymers and their relevance in mucoadhesive drug delivery system, *Future J. Pharm. Sci.* 4 (1), 47-52
- 62. Naveen, N. R., Gopinath, C., & Kurakula, M. (2020). Okra-thioglycolic acid conjugate-synthesis, characterization, and evaluation as a mucoadhesive polymer. *Processes*, 8(3), 316. https://doi.org/10.3390/pr8030316
- 63. Bernkop-Schnurch, A., Kast, C. E., & Richter, M. F. (2001). Improvement in the mucoadhesive properties of alginate by the covalent attachment of cysteine. *Journal of controlled release :official journal of the Controlled Release Society, 71*(3), 277-285.
- 64. Bernkop-Schnurch, A., Schwarz, V., & Steininger, S. (1999). Polymers with thiol groups: A new generation of mucoadhesive polymers? *Pharmaceutical Research*, *16*(6), 876-881. Bernkop-Schnurch, A., & Steininger, S. (2000). Synthesis and characterisation of mucoadhesive thiolated polymers. *Int J Pharm*, *194*(2), 239-247.
- 65. Bruneel, D., & Schacht, E. (1993). Chemical modification of pullulan: 1.Periodate oxidation. *Polymer*, *34*(12), 2628–2632.
- 66. Davidovich-Pinhas, M., Harari, O., & Bianco-Peled, H. (2009). Evaluating the mucoadhesive properties of drug delivery systems based on hydrated thiolated alginate. *J Control Release*, 136(1), 38-44.
- 67. Dünnhaupt, S., Barthelmes, J., Iqbal, J., Perera, G., Thurner, C. C., Friedl, H., & Bernkop-Schnürch, A. (2012a). In vivo evaluation of an oral drug delivery system for peptides based on S414 protected thiolated chitosan. *J Control Release*, 160(3), 477-485.

68. Raghavendra Naveen, N., Kurakula, M., & Gowthami, B. (2020). Process optimization by response surface methodology for preparation and evaluation of methotrexate loaded chitosan nanoparticles. *Materials Today: Proceedings*. https://doi.org/10.1016/j.matpr.2020.01.491.